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We present results regarding the existence of j-convex preserving interpolation
operators, as well as results concerning the determination of existence of such
operators. We include an application in which we make use of a sufficient set of test-
functions to characterize when every degree of convexity can be preserved among
particular families of polynomial interpolation operators, which include the Bernstein
operators. � 2000 Academic Press

1. INTRODUCTION

Let (X, & }&)=(C[a, b], & }&�) where & f &�=supt # [a, b] | f (t)|. In [12,
p. 26], the notion of an interpolation operator is introduced: a linear
operator P: X � X that can be written P=�m

i=0 $ti
�vi , where ti # [a, b],

ti<ti+1 and vi # X, i=0, ..., m, is said to be an interpolation operator; note
that in this terminology we do not mean that Pf interpolates f at the point
ti , but rather that Pf is determined by the evaluation of f at each ti . As
such, we may assume that t0=a and tm=b. We denote the set of interpola-
tion operators by P. In the literature, these operators are also referred to
as finite carrier or discretely defined operators.

Interpolation operators have been the topic of recent study, particularly
with regard to establishing Jackson-type estimates in the approximation of
functions from C[a, b]. Starting from [2], for example, variations on the
following question have been addressed (see, e.g., [4, 17]): For each n # N,
can one construct a positive-preserving interpolation operator, Ln , such
that

&Ln f &f &C[a, b]=O(n&:)

for all f such that |2( f, $)�C$:, 0�:�2? Pointwise estimates to the
above problem have also been considered (see [13, 14]). As a further
variation, pointwise estimates have been given for operators (not necessarily
interpolatory) that preserve higher degrees of convexity (see, e.g., [5, 14]).
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It is in [14] that convexity-preserving results pertaining to certain inter-
polation operators are given; the authors exhibit a theorem which charac-
terizes, via a finite set of ``test-functions,'' the convexity-preserving ability of
certain interpolation operators. The main results of the current paper use
a finite set of test-functions in an attempt to generalize this characterization.
We determine a finite test-function set that provides a sufficient condition for
the preservation of arbitrary j-convexity; this set also offers a characterization
of j-convex preservation in particular situations. We go on to show in
Section 3 that this characterization is best possible, in the sense that no
finite set of functions can characterize j-convex preservation in any other
situation. In Section 4, motivated by [3, 8], the sufficient conditions given
in Section 2 are utilized in characterizing when it is possible for Bernstein-
type operators to preserve all degrees of convexity.

The set of j-convex functions of X, which we now denote as S, may be
defined in a number of equivalent manners (e.g., see [1, 15]). However,
due to the approach of the current considerations, it is most convenient for
us to define S via the following mechanism. For a nonnegative integer j, we
denote the j th divided difference of f # X at the points a�x0< } } } <xj�b
by [x0 , x1 , ..., xj] f. Of course [x0 , x1 , ..., xj] f can be expressed as a linear
combination of point evaluations of f (x) and thus we regard [x0 , ..., x j]
# X* where ( f, [x0 , ..., xj]) :=[x0 , x1 , ..., x j] f. For a collection of func-
tions f1 , ..., fn , we denote the set of all nonnegative linear combinations of
those functions by cone( f1 , ..., fn).

Definition 1.1. For fixed j, let S*/X* denote the weak*-closure of
the cone generated by the set S 0*=[[x0 , ..., xj] | a�x0< } } } <xj�b]. Let
S=[ f # X | ( f, ,)�0 \, # S*]. f # X is said to be j-convex if f # S.

Definition 1.2. P # P is said to be j-convex preserving if Pf is j-convex
whenever f is j-convex (i.e., PS/S).

Note 1. It follows (e.g., from Lemma 1.1 in [7]) that S* defined above
is exactly the dual cone of S; that is, S*/X* is the set of all functionals
nonnegative against S. Thus we have for any linear operator P, PS/S if
and only if P*S*/S* where P* denotes the adjoint of P. The following
theorem from [15] characterizes S* by identifying the extreme rays of S
(modulo 6j&1).

Theorem 1.1 (see [15, p. 407]). Let S denote the cone of j-convex
functions and let S*/X* denote the dual cone of S. Then u # S* if and
only if

(xi, u)=0, i=0, ..., j&1
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and, for each t # [a, b],

(,t(x), u)�0,

where

,t={0
(x&t) j&1

if x�t
if x>t.

Note 2. Note 1 indicates that P=�m
i=0 $ti

�vi preserves j-convexity if
and only if the linear combination of point-evaluations P*[x0 , ..., xj] is
a nonnegative linear combination of j th divided differences. The fragile
nature of this problem is well illustrated in the following example, where
we note that ``small'' changes in an operator's action can produce ``large''
consequences with respect to shape-preservation.

Example 1.1. The second degree Bernstein operator B2=C[0, 1] �
62 is an interpolation operator that preserves (among other things) 1-con-
vexity or monotonicity. This is accomplished while nearly fixing 62 ; with
respect to the basis (1, t, t2)T, the so-called action matrix associated with
B2 is

1 0 0

\0 1 0 + .

0 1�2 1�2

However, as is well known (see, for example, [16]), an interpolation
operator with identity action matrix (i.e., an operator that fixes 62) cannot
preserve monotonicity. Indeed, employing the language of Notes 1 and 2
above, if such an operator P: C[0, 1] � 62 did exist, we could rewrite it as
P=�3

i=1 ui � t i&1 where each u i is a linear combination of point-evalua-
tions. Then P would also preserve monotonicity from (C1[0, 1], & }&) onto
62 , where & f &=max i=0, 1[& f (i)&�]. But this is in contradiction to [6,
Lemma 2,2] which shows that such an operator, P=�3

i=1 ui� ti&1 : C 1

� 62 , must have u2=$$0 , where $$0 denotes derivative evaluation at t=0.

2. A SUFFICIENT (AND OCCASIONALLY NECESSARY)
FINITE TEST-FUNCTION SET

As described in the following definition, we are interested in the possibility
of subsets of X to which one may confine one's attention when determining
if P # P preserves j-convexity. We will thus assume in the following that
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P6j&1 /6j&1 , since this condition is necessary in order for P to preserve
j-convexity (note P(\xi) must be j-convex for i=0, ..., j&1). We also
assume the necessary condition that m� j.

Definition 2.1. Fix a=t0<t1< } } } <tm=b and let 0/X. Let Pj

denote the operators of P that leave 6j&1 invariant. We say 0 is a
sufficient test-function set if, for all P # Pj , P0/S implies P preserves
j-convexity. Similarly, we say 0 is a necessary test-function set if P0/S
whenever P # Pj preserves j-convexity.

We now construct a finite subset of X that is a sufficient test-function set.
For particular choices of j and m, we find this set to be a necessary test-
function set as well. It is interesting to note that the test-functions given
below were also utilized in [11] for a different purpose.

Definition 2.2. For the integer j�2 and for k=0, ..., m& j, define

|+
k (x) :={0

|k(x)
for a�x�tk+ j&1

for tk+ j&1�x�b,

where |k(x) :=(x&tk+1) } } } (x&tk+ j&1). For j=1, define w+
k (x) to be

the continuous piecewise linear function vanishing on [a, (tk+tk+1)�2],
identically 1 on [tk+1 , b] and linear on [(tk+tk+1)�2, tk+1] (rising from
0 to 1 on this interval). Let 0=[|+

k ]m& j
k=0 .

Note 3. Since elements of P depend only on the points t0 , ..., tm , the
above set 0, relative to elements of P, is not unique; any set of m& j+1
functions agreeing with each |+

k at the ti 's would suffice.

Lemma 2.1. Let P=�m
i=0 $ti

�vi be an interpolation operator and let
f # S. Then there exists |f # cone(|+

0 , ..., |+
m& j) and qf # 6 j&1 such that

Pf =P|f+Pqf .

Proof. Let f (x) # S and, for k=0, ..., m& j, let pk( f; x) be the j&1-
degree polynomial that interpolates f (x) at the j points tk , tk+1 , ..., tk+ j&1 .
Note that pk+1& pk has ( j&1) zeros and can be used to define |k(x),

pk+1( f; x)& pk( f; x)=Bk(x&tk+1)(x&tk+2) } } } (x&tk+ j&1)

=Bkwk(x)

for some constant Bk (in the j=1 case, we define |k(x)#1). Since the
remainder for polynomial interpolation can be expressed as

f (x)& pk( f; x)=( f, [x, tk , ..., tk+ j&1])(x&tk) } } } (x&tk+ j&1)
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we use the observation that f (tk+ j)& pk( f; tk+ j)&Bk wk(tk+ j)=0 to solve
for Bk in terms of a divided difference,

Bk=( f, [tk , ..., tk+ j])(tk+ j&tk
). (1)

Note that each Bk�0 since f # S. Now, for j�1, define |+
k (x) via |k(x)

and simply note that f (x) and p0( f; x)+�m& j
k=0 Bkw+

k (x) agree at t i ,
i=0, ..., m. Hence Pf=Pp0( f; x)+P|f where |f :=�m& j

k=0 Bk w+
k (x) #

cone(|+
0 , ..., |+

m& j). K

Theorem 2.1. 0 is a sufficient test-function set.

Proof. Let [x0 , ..., xj] # S* and let f # S. Suppose P # Pj is such that
P0/S. Then, by Lemma 2.1,

(Pf, [x0 , ..., x j]) =(P|f+Pqf , [x0 , ..., x j])=(P|f , [x0 , ..., xj]) �0

since Pqf # 6j&1 and |f # cone(|+
0 , ..., |+

m& j). Thus P preserves j-convexity.
K

Theorem 2.2. If j=1, 2 then 0 is a necessary and sufficient test-function
set.

Proof. In the j=1, 2 cases, 0/S. K

Theorem 2.3. If m= j, j+1 then 0 is a necessary and sufficient
test-function set.

Proof. The sufficiency of 0 follows from Lemma 2.1. Suppose P preserves
j-convexity. Let m= j+1; note that in this case, 0=[|+

0 , |+
1 ]. By

Theorem 1.1, ,t1
# S; let us consider the associated function |,t1

=B0|+
0

+B1 |+
1 . From (1) in the proof of Lemma 2.1, we see that B1=0. Then for

any [x0 , ..., x j] # S*, we have

(PB0 |+
0 , [x0 , ..., xj])=(P(B0|+

0 +B1|+
1 ), [x0 , ..., xj])

=(P,t1
, [x0 , ..., x j])

�0.

Since B0�0, we conclude that P|+
0 # S. Similarly, using ,tm&1

and the
associated function |,tm&1

one finds P|+
1 # S. In the m= j case, we have

0=[|+
0 ], with |+

0 identically 0 on [a, tm&1]. And thus |+
0 and ,tm&1

differ on [t0 , t1 , ..., tm] by only a positive scalar multiple. Hence it follows
that P|+

0 # S. K
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Note 4. The extreme rays ,t of S described in Theorem 1.1 can be
associated with their corresponding |,t

# cone(|+
0 , ..., |+

m& j). Indeed, for
each ,t(x) we have |,t

:=�m&k
k=0 Bk(t) w+

k (x) where Bk(t) is (a positive
scalar multiple of) the B-spline (,t(x), [tk , ..., tk+ j]). Thus if P # P preserves
j-convexity then

:
m& j

k=0

Bk(t) Pw+
k (x)

is j-convex for t # [t0 , tm].

Proposition 2.1. Let P # Pj . Then P preserves j-convexity if and only if

:
m& j

k=0

Bk(t) Pw+
k # S for all t # [t0 , tm].

3. THE IMPOSSIBILITY OF A NECESSARY AND
SUFFICIENT FINITE TEST-FUNCTION SET

In this section we show that the cases of Section 2 in which a finite
test-function set characterized the preservation of j-convexity are the only
such cases. Thus throughout the following we assume m&1> j>2.

Theorem 3.1. Let 0=[|1 , ..., |n]/X. Then 0 is not a necessary and
sufficient test-function set.

The following lemma will be used in the proof of the above.

Lemma 3.1. The cone S� |T
has infinitely many extreme rays, where S� :=

S+6j&1 /X�6 j&1 and T :=[$t0
, ..., $tm

] & (6j&1)=.

Proof. 6j&1 is a closed subspace of X, and thus X�6j&1 is a Banach
space. For f # X, let f� :=f +6k&1 # X�6j&1 . Since the dual space of X�6j&1

is isometrically isomorphic to (6j&1)=/X*, we may regard X�6j&1 /X**
(note that, via this identification, we have (u, x̂)=(x, u) each for u # X*).
Let T :=[$t0

, ..., $tm
] & (6j&1)= and note that T is of dimension m& j+1.

We now construct a particular basis for T consisting of jth divided differences:
for i=0, ..., m& j let

7i=[ti , ti+1 , ..., t i+ j].

The set [7i]m& j
i=0 /[$t0

, ..., $tm
] is linearly independent and, since each 7i

is a j th divided difference, we have 7i # (6j&1)=. Thus [7i]m& j
i=0 is a basis
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for T. Obviously S� /X�6j&1 is a pointed cone and thus so is S� |T . We may
regard S� |T

as a cone in Rm& j+1 by associating to each f� |T # S� |T
the vector

(( f, 70) , ..., ( f, 7m& j) ).

In demonstrating that S� |T
has infinitely many extreme rays, we may confine

our attention to a particular 3-dimensional subcone of S� |T
as we now show.

Note that, by Theorem 1.1, each extreme ray of S� |T
must contain the vector

,� t|T
for some t # (t0 , tm); i.e., the cone generated by [,� t|T

] t # [t0 , tm] is exactly
S� |T

. Consider the subcone K/S� |T
generated by

[,� t|T
] t # (tm&3, tm&2) .

By the definition of ,t(x) (in Theorem 1.1), it follows that

0 if t�ti

(,t , 7i)={ct if t i<t<t i+ j (2)

0 if t�ti+ j ,

where ct>0. Thus, if ,� t|T
# K (i.e., if t # (tm&3 , tm&2)) then

,� t|T
=(0, 0, ..., 0, (,t , 7m& j&2) , (,t , 7m& j&1) , (,t , 7m& j) ), (3)

and k is a 3-dimensional subcone (note that m& j�m&3 by our initial
assumption of this section). Furthermore, it follows from (2) and (3) that
K is not contained in the cone generated by [,� t|T

]t # [t0 , tm&3] . We now claim
that K has infinitely many extreme rays. Indeed, by [18, p. 123], the
B-splines (,t , 7m& j&i) (i=0, 1, 2) appearing in (3), are linearly independent
on (tm&3 , tm&2); in fact, on this interval, we have

(,t , 7m& j&i)= :
2

k=0

ai, k(tm& j&k&t) j&1

for some constants ai, k . Thus, with

v :=((,t , 7m& j&2) , (,t , 7m& j&1) , (,t , 7m& j) )

and

w :=((tm& j&2&t) j&1, (tm& j&1&t) j&1, (tm& j&t) j&1)

we have v=wM, where M is a nonsingular 3_3 matrix. Clearly the cone
generated by w has infinitely many extreme rays and thus so does wM.
Hence K has infinitely many extreme rays and thus S� |T

must have infinitely
many extreme rays. K
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Proof of Theorem 3.1. Let E denote the Banach space X�+6j&1 . Let
0=[|1 , ..., |n]/X and consider 0� |T

, where 0� /E, and T :=[$t0
, ..., $tm

]
& (6j&1)=. Suppose that 0� |T

is contained in the cone S� |T
. We claim that

0 is not a sufficient test-function set. Indeed, by Lemma 3.1, the cone
K :=cone(|̂1|T

, ..., |̂1|T
) cannot contain all of S� T ; let |̂ |T

# S� T & K� . Let
C :=co(|̂1|T

, ..., |̂1|T
) and note that the subspace [|̂ |T

] does not intersect
C. From the convexity and compactness of C it follows that there exists an
entire closed hyperplane H containing [|̂ |T

] such that H & C=< (see
[9, p. 112]). Thus there is a continuous linear functional h # (E |T

)* such
that, after scaling, (|̂ |T

, h)=0 and minx # C(x, h)=1. Now dim(T )=
dim(E |T

)=dim((E |T
)*), and therefore, again using the identification of E*

with (6j&1)=, we choose as a basis for (E |T
)* a (fixed) basis of T. Hence

we may regard h as a linear combination of the point-evaluations [$t0
, ...,

$tm
] that vanishes on 6j&1 . To complete the proof, we ``shift slightly'' the

above hyperplane so that it strictly separates C from [|̂ |T
]. Indeed, let

g # T be such that (|̂ |T
, g) =1. If maxx # C(x, g)�0, then take { :=h& g

so that (|̂ |T
, {)=&1, while (x, {) �0 for all x # C. Otherwise let

maxx # C(x, g)=: 1�c>0 and take { :=h&cg so that for every x # C, we
have (x, {) �1&(x, cg) �0, and (|̂ |T

, {)=(|̂ |T
, &cg)=&c<0.

Regarding { # T as a linear combination of point-evaluations, we define
P :={�v for a fixed v # S where v � 6j&1 . Note that P # Pj . Furthermore,
observe that, while P|i # S for i=1, ..., n, we have P| � S (where | # S is
a function such that |̂ # E restricts to |̂ |T

on T ). Thus 0 is not sufficient.
We now consider the case in which 0� |T

/3 S� |T
. In this case we claim that

0 is not a necessary test-function set. The proof of this claim is similar to
the above argument: let C=co([,� t|T

] t # (0, 1]), where the functions ,t are as

in Theorem 1.1 and the functions ,� t # E are normalized so that &,� t |T
&=1

for t # (0, 1]. If 0� |T
/3 S� |T

, then, without loss, we may assume |̂1|T
� S� |T

and
whence the space [|̂1|T

] & C=<. Thus, as demonstrated above, there
exists f # T such that (|̂1|T

, f ) <0 and (x̂ |T , f )>0 for all x̂ |T
# C. Let

v # S and define P :=f�v. Then P is a j-convex preserving interpolation
operator such that P|1 � S. Thus 0 is not necessary. K

4. AN APPLICATION: BERNSTEIN-TYPE OPERATORS

In this section we are interested in n th degree polynomial interpolation
operators, P: C[0, 1] � 6n , that are supported on the equidistant nodes
[i�n]n

i=0 (i.e., P=�n
i=0 $ i�n �v i where the vi # 6n). We specialize our

consideration a bit more as given in the following definition.
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Definition 4.1. An interpolation operator P=�n
i=0 $ti

�vi is said to
be an n th degree Bernstein-type operator if ti=i�n and, in addition, each
vi contains a ti term but contains no t j term, j<i. Let Bn denote the set of
all n th degree Bernstein-type operators.

In [3], clever results regarding uniform convergence of particular sequences
operators of Bernstein-type are given. The operators considered in [3] were
obtained by replacing the binomial coefficients in the nth-degree Bernstein
operator with general ones satisfying a particular recursive relation; i.e.,
An=�n

k=0 $k�n �:n, kxk(1&x)n&k. However, in general, operators of this
form cannot preserve j-convexity for any j=1, ..., n. This is easily seen via
a parameter count: in order for An to preserve j-convexity, it is necessary
that An be invariant on 6j . As illustrated below, this requirement translates
into j(n& j+1) conditions on the :n, k coefficients, k=0, ..., n; the resulting
coefficients give only positive scalar multiples of the original n th degree
Bernstein operator.

Thus we are thus motivated to seek Bernstein-type operators that
preserve varying degrees of convexity. The following theorem characterizes
those operators preserving j-convexity for all j=0, 1, ..., n.

Theorem 4.1. Let P be an nth degree Bernstein-type operator. Then P
preserves (simultaneously) j-convexity for j=0, 1, ..., n if and only if P preserves
0-convexity or positivity.

Example 4.1. Of course the n th degree Bernstein operator belongs to Bn .
In the course of the proof of Theorem 4.1, it will be shown that in fact Bn forms
an n-parameter family of operators. In general, within this family there are
many operators that preserve positivity and thus preserve convexity of every
degree. For example, in the n=2 case the 1-parameter family given by

Pc=($0 �c&ct+t2)+($1�2 �ct&2t2)+($1 �t2)

preserves positivity for all c�2.

To prove the above theorem we will need the following technical lemma.

Lemma 4.1. Let j, k, and h be positive integers such that 1�j�k�h. Then

:
h

i=k

(&1)h&i \h
i + `

j&1

m=1

(i&k+m)=(&1)h&k ( j&1)! \h& j
k& j+ , (4)

where, in the j=1 case, > j&1
m=1 (i&k+m) :=1.

Proof. We prove (4) by induction on j�1, where the case j=1 is again
proved by induction, this time on k. K
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Proof of Theorem 4.1. We must show that every positive operator in Bn

preserves j-convexity, for j=1, ..., n. To this end, we begin by noting that
Bn forms an (n+1)-parameter family in the following way: for P # Bn , we
can write

P= :
n

i=0

$ti
�vi=$9 �v�

a0, 0 a0, 1 } } } a0, n 1

0 a1, 1 } } } a1, n t
=($0 , $1�n , ..., $1)�\ b 0 a2, 2 } } } +\ b+ . (5)

b b b b b
0 } } } 0 an, n tn

The conditions that P(6j)/6j , j=0, ..., n&1, give rise to n(n+1)
2 equations

(linear in the coefficients) involving columns 1 through n of the above
matrix. Specifically, for fixed h, where 1�h�n, we must have

a0, h

b

(t j, ($0 , $1�n , ..., $1)) }\ah, h

0 +=0 (6)

b
0

for each j=0, ..., h&1. These h equations allow us to express all coefficients
in column h in terms one parameter. We choose as parameters the diagonal
entries and find that

ai, h=ah, h(&1)h&i \h
i+ , i=0, ..., h (7)

solves (6) for every 0� j�h&1. Letting ai :=ai, i , i=0, ..., n, we can
rewrite (5) as

P=($0 , $1�n , ..., $1)�\
a0 &a1 a2 } } } (&1)n an

+ .

0 a1 &2a2 } } } (&1)n&1 nan

0 0 a2 } } } } } }

b b b } } } b
b b b b b
0 } } } } } } 0 an

1

t\ b+btn
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Referring back to (5), we see that P # Bn is positive if and only if each
vi is a nonnegative polynomial. Thus we may assume that the result of
``dotting'' each row of the coefficient matrix in (8) with (1, t, ..., tn)T

produces a nonnegative polynomial in t.
We demonstrate that P preserves j-convexity, for j=1, ..., n, by induction.

Thus we begin by verifying that P preserves 1-convexity or monotonicity.
Referring to Theorem 2.1, let |+

1, k be a continuous piecewise linear function,
vanishing on [0, (k�n)&(1�2n)] and identically 1 on [(k�n), 1], k=1, ..., n
(note that, to simplify notation, we enumerate the |+ functions in this
application in a slightly different manner). Then P preserves monotonicity
if and only if P|+

1, k is monotone for each k. Using the fact that

(|+
1, k , ($0 , $1�n , ..., $1)) =(01 , 02 , ..., 0k , 1, ..., 1),

we see that every term of polynomial Pw+
1, k(t) has degree greater than or

equal k. The coefficient for th, k�h�n, is a partial sum of entries in
column h in the matrix of (8); i.e., denoting by ck, h the coefficient of th, one
finds that ck, h=ah �h

i=k (&1)h&i ( h
i ). Using the j=1 case of Lemma 4.1,

one then has

ck, h=ak
k
h

(&1)h&k \h
k+ .

Now (Pw+
1, k)$ (t)=�n

h=k hck, h th&1 and thus the coefficient of th in the
polynomial t�k(Pw+

1, k)$ (t) is ah(&1)h&k ( h
k); but this is just the (k, h) entry

in the coefficient matrix of (8). We have demonstrated then that

t
k

(Pw+
1, k)$ (t)=vk(t).

Since vk is nonnegative it follows that P preserves monotonicity.
We now complete the inductive step of the proof. With Theorem 2.1

in mind we define, for 1� j�k�n, w j, k(t) :=(t&tk& j+1)(t&tk& j+2) } } }
(t&tk&1) and

w+
j, k(t) :={0

wj, k(t)
if 0�t�tk&1

if tk&1�t�1,

where ti=i�n. For j�1 fixed, we claim that

}t(Pw+
j+1, k) ( j+1) (t)=(Pw+

j, k) ( j) (t) (9)
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for k= j+1, j+2, ..., n, where } is a nonnegative constant (recall that we
have already seen (Pw+

1, k) (1) (t)�0 for every k=1, ..., n). To show (9), we
begin by noting that, from the definition of |j, k , it is clear that (with
k� j+1) the degree of every term in polynomials Pw+

j, k and Pw+
j+1, k is

greater than or equal to k. Indeed, for k�h�n, a careful calculation shows
that the coefficient of th in Pw+

j, k is

Cj, h, k :=ah
1

n j&1 :
h

i=k

(&1)h&i \h
i + `

j&1

m=1

(i&k+m) (10)

while the coefficient of th in Pw+
j+1, k is

Cj+1, h, k :=ah
1
n j :

h

i=k

(&1)h&i \h
i + `

j

m=1

(i&k+m). (11)

Using Lemma 4.1, it is possible to obtain Cj+1, h, k from Cj, h, k via multi-
plication by a constant (dependent on h),

n(h& j)
j(k& j)

Cj+1, h, k =
n(h& j)
j(k& j)

aj
1
n j :

h

i=k

(&1)h&i \h
i+ `

j

m=1

(i&k+m)

=ah
1

n j&1 \ h& j
j(k& j)

(&1)h&k h! \h& j&1
k& j&1++

by Lemma 4.1

=ah
1

n j&1 (&1)h&k ( j&1)! \h& j
k& j+

=Cj, h, k by Lemma 4.1.

Let } :=n�j(k& j); then the coefficient of th& j in the polynomial
}t(P|+

j+1, k)( j+1) (t) is

n
j(k& j)

Cj+1, h, k h(h&1) } } } (h& j+1)(h& j)

=Cj, h, k h(h&1) } } } (h& j+1). (12)

But the right-hand side of (12) is simply the coefficient of th& j in the poly-
nomial (P|+

j, k) ( j)(t) and thus we have established (9). Therefore, Pw+
j, k(t) is

j-convex for j=1, ..., n (k= j, ..., n) and thus, by Theorem 2.1, P preserves
j-convexity for j=1, ..., n. K
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